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The leapfrog scheme is applied to the Van der Pol equation. When the
amplitude of oscillation of the physical mode exceeds a critical value,
the computational mode is parametrically excited by the physical mode.
The growth of the computational mode interrupts the integration based
an the leapfrog scheme. The critical amplitude of the physical mode is
determined by the linear stability analysis and the parametric excitation
theory. The Runge-Kutta smoother eliminating the computational
mode enables the longtime integration based on the leapfrog scheme,
€1 1993 Academic Press, Inc. .

1. INTRODUCTION

The leapfrog scheme used for solving differential equa-
tions is cpu-time-saving compared to another scheme such
as the Runge-Kutta scheme. The defect of the leapfrog
scheme is that it causes the computational mode [1-4].
The computational mode once excited grows with time in a
manner of {—1)" F", where # denotes the time step and |F"|
increases with n monotonically (see Appendix ). The growth
of the computational mode interrupts the integration based
on the leapfrog scheme.,

In our previous paper { 5] for the longtime integration of
the Korteweg-de Vries cquation by the use of the leapfrog
scheme, we showed that the physical mode parametrically
excited the computational mode. In the subsequent paper
[6], we proposed the Runge-Kutta smoother which can
successfully eliminate the computational mode. The Runge—
Kutta smoother combined with the leapfrog scheme enables
us to perform the longtime integration of the Korteweg-
de Vrics equation. -
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In this paper, we apply the leapfrog scheme to the Van
der Pol equation. We show that the growth of the computa-
tional mode interrupts the integration of the Van der Pol
equation, The mechanism of parametric excitation of the
computational mode by the physical mode is clarified. The
critical amplitude of the physical mode is determined. In
order to perform the longtime integration based on the
leap-frog scheme, elimination of the computational mode
is indispensable. A way of eliminating the computational
mode is proposed.

2. LEAPFROG SCHEME FOR THE
VAN DER POL EQUATION

If we apply the multiple-time-scale perturbation analysis
to the Van der Pol equation

d?x dx
= 2e(l — x?) - x = <@ |
S5 (=)o h =0 (O<c<l), (N
we obtain the approximate solution as
2cos(t+¢)
x(t)= (2)

[ (4/X5—1) eV
where X and ¢ are constants [7]. We see from Eq. (2) that

x{1y =~ X, cos{t +¢), when 0<r<€l/e
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FIG. 1, Solution of leapfrog schemes (6) and (7).
and
x(t)=2cos{t+¢), when i< (3)

Thus, the amplitude of sinusoidal oscillation varies slowly
from X, to 2.

The Van der Pol equation (1} is written as simultaneous
first-order differential equations as

dx

7= {4)
Y el —x?) y—

dt—Ze(l x‘)y—x (%)

The leapfrog scheme for Eqs. (4) and (5) gives

xn+1_xn—1
= n, 6
2 y (6)
yrr+1_yrt—l ; . .,
T=2£(1—x 2y —x7, (7)

where X" =x(t=n 4t) and y" = y(t=n A1).
Figure 1 gives x" obtained from Egs. (6) and (7) for
€=0.025 and 4:=0.2. The initial values are x*=0 and

r e=0.025 A=02 0=0 y0=0.5
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FIG. 2. The onset of the computationai mode, Magnified figure of
Fig. 1.
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FIG. 3. The physical mode »” of x”" in Fig. 1.

9=0.5. Then x! and y' are calculated by the Euler scheme
with the time increment A¢ Thus, we fail to get the
asymptotic solution {3} with the constant amplitude of two
when ¢ — oo, Figure 2 gives x" in Fig. 1 for =380~ 120.
The figure shows the onset of the computational mode
oscillating in a manner of (—1)". We decompose x" and y"
into physical and computational modes as

x“=u"+(—1)” v,

8
Y=+ (=1 " ®
where u” and &" are the physical modes and (—1)" v"” and
{(—1)"#" are the computational modes. In order to deter-
mine #", ¢", £, and 4" from x" and y", we integrate Egs. (4)
and (5) from r={(n—1) 4t to t=n At, using the Runge—
Kutta scheme, and obtain x(t =r 4t} and y(t =n A¢) from
x"~Vand y"~' [5,6]. Then u", v, ", and n” are given by

w=5[x"+x(ndnl,

(=1yv"=3[x"—x(n 48],
§"=10y"+ y(n 4],
(=1 n"=3[y"— y(n41)].

Figures 3 and 4 give the physical mode 4" and the computa-
tional mode ¢" of x" in Fig. 1. These figures show that the
onset of the computational mode u” interrupts the correct

4 . .
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FIG. 4. The computational mode v” (not {—1}" v") of x" in Fig. 1.
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temporal development of the physical mode «”. Figures 3
and 4 also show that the computational mode v” starts to
grow when the amplitude of the physical mode 4" exceeds a
certain threshold, whose value will be examined later.

3. LINEAR ANALYSIS OF LEAPFROG SCHEME

We eliminate y" ', ", and y"* ' in Eq. (7) using Eq. (6)
to obtain

xn+1_xn—l
=£1—x"2 _—x"
( ) T

xn+2_2xn+xn—2
44

(10)

We replace 1 —x"? in the right-hand side of Eq. (10) by
1 — X2, where X is constant. Then we obtain the linear
version of Eq. (10) as

n+1 n—1

xn+2_2xn+xn72

2 x — X ]
=gl — —x" 11
447 =X — ()
Equation {11} has the solution of the form
X" o e, (12)

where i = \/?1 Substitution of Eq. (12)into Eq. (11) gives
sin? v+ 2ie Af{1 — X*}sin t— A7 =0
or
sint= ~i{1—X%)edt+. /1 -1 XY 4r.  {13)
Since £ < 1, the value in the square root is positive. If we put
T="Tg+iTy,
then we obtain from Eq. {13)

1—e(1—X2)2 41,  (14)

(15)

sint,cosh1,= +

cos tpsinh1,= —(1 — X} & At.

If we assume that |z,| <1, then cosh 1, =~ 1 so that Eq. {14)
gives

1r= £/ 1—62(1 - X?) 4t (16)
or
tp=nt./1-*(1—X?) 4t 7
Equation (15) with Eq. (16) gives
1,= —&(1 — X2} 41 (18)
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Equation (15) with Eq. (17) gives

T, =8(1 — X?) 4r. {19)

The general selution of Eq. (11) is given by Eqs. (12),

{(16)-(19) as

x" = XA g cos /1 —eX(1— X3V n Ar
+Bsin\/1_—mndz]
F(—1y e =¥ a[Coos /T e} (1— X7 n dt
+ Dsin /1 —e2(1 — X)) n 41], (20)

where A, B, C, and D are constants. The first and second

terms of the right-hand side of Eq. (20) represent the

physical and computational modes, respectively. The

computational mode becomes unstable when

|X] > L (21)

A more simple second-order finite difference equation
corresponding to the Van der Pol equation (1) is

xn+1_2xn+xn—l xn+14xn—l
_ —l—xEl—*
At At

(22)

where we have put 1 — x"2 =1 — X2 It is interesting to note
that the first term of the righ-hand side of Eq. (20) is
the general solution of Eq. (22). Then Eq. (22) gives no
computational mode.

4, PARAMETRIC EXCITATION OF
COMPUTATIONAL MODE

If we substitute x" in Eq. (8) into Eq. (10), we obtain

"+ (—1)y'6"=0, (23)
where
n+2 n n—2
—2u"+
gr=" 4;12 d —e(l —u"?—p"Y)
g1 v””Av"“
X ———— " — 284" ———, 24
A1 v At (24)
U"+2*2UH+U"_2
"= VI +e(l—u"—p"?)
1Jr!+1__vn—l un+1_”n71
X —————t "+ 28— 25
At At { )
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Since u"” and »" do not contain the temporal variation
expressed by (—1)", we assume that 6" and 6" change
smoothly with »n. Then 6" and 4" can be expanded as

g"tl=0"40(4t)  and

3" =6"4 0(41), (26)

respectively. If we substitute Eq. (26) into 677! — (—1)* §"*!
={), we obtain

8"+ (A =(—1)"[6"+ O(41)]. (27)
Substitution of Eq. (23) into Eq. (27) gives
0" = O(4r) and 8" = 0{4t). (28)

Therefore, 8" and 4" in Eq. {23) may be set equal to zero for
a sufficiently small 4¢. Thus, we obtain

un+2_2un+un—2 (1 s n,)u"“——u”’l
—él—-w"—v)—
441 At

LY

+ u”"

_vn—i
At ’
perI 2 42
el i) 2
447 (1—u "~

n+]_un—l

At

= 2eu™y” (29}

L

= _2£ul‘l‘uﬂ

(30)

If we consider the initial stage of the growth of the
computational mode ¢"(|v"| <€ |u"]), we can neglect the
right-hand side of Eq. (29) and +"? in the left-hand side of
Egs. (29) and (30). Then we write Egs. {29) and (30) in
forms of differential equations as

d2 d

E;—2s(1—u2)?1:+u=0, (1)
d? d d d
?dr—;}+2££+v=2eu(u£—2vd—?). (32)

Equation (31) is the Van der Pol equation which has the
solution of the form

u=Ucost=3Ue"+e ") (33)
U is a slowly varying function of 1. We put
v= Vel + V¥ Y, (34)

where V is the slowly varying function of ¢, and ¥'* is the
compiex conjugate of V. We substitute Egs. (33) and (34)
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into Eq. (32), assume that dU/dr = 0 (eU), dV/dt =~ 0 (eV),
and neglect terms of order ¢° of Eq. (32). Then we obtain

dv . dV* ) )

_Ci_'t_elf_ dt e"ﬂ+8(Ve”_ V*e-.ﬂ}
1
4

£U2(e2r'r + 2+e—2i:)( Vei!ﬁ V*e—ir)
1 20 ,2ir —2ir i —ir
—ieU (e —e ) (Ve + V*e™" ).  {35)

We collect terms only containing e” and e ~“ to obtain

V 2
‘;—I—s(%—l) V= —~%£U2V*
dvV* U? ’ (36)
" —s(-z——l) V*= UV

respectively. Equation (36) has the selution of the form
V, V* o ¥,

where v is given by

Then the growth rate ¥ of the computational mode is given
by

y=36(U*—%) (37)

or
v=—e(3 U +1).

From Eq. (37), the computational mode is unstable when

|U| > /4/5 = 0.894,

Inequality (38) is the improved instability condition of
Eq. (21). In Figs. 3 and 4, it is not so easy to find the clear
onset point of the computational mode instability, because
the initial value of the computational mode |v"| is too small
{~107%). If we see the logarithmic piot of |¢"] in Fig. 7
{whose explanation will be given later), it may be found
that [v"] starts to grow around ¢ ~ 30. The physical mode
threshold then is found to be about one, from Fig. 3. This
may confirm the instability condition (38).

In this section, we solved the differential equations (31)

(38)
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and (32) which hold true only when |v"| <€ |u"| in the
difference equations (29) and (30). The full differential
versions of Egs. (29) and {30) arc

d’u du dv

(] — R — ) — = il

12 el —u—v ]a’t+u 4suv 7 (39)
d*v N . u
— — - —+r=— —. 40
dt2+28{1 U —v )dt+v deuv " (40)

In order to check the validity of setting 8" and 8" to be
zero in Eq. (23), we solved Eqgs. (39) and (40) by the
Runge-Kutta scheme with a small initial value of v, Equa-
tions (39) and (40) were found to lead us essentially to the
same results as shown in Figs. 3 and 4. It is interesting to
note that Eqs. (39) and (40) coincide, respectively, with
(A8a)and (A8b) in the Appendix, which are reducible from
the so-called augmented system introduced by J. M. Sanz-
Sernaer al [2,3].

5. RUNGE-KUTTA SMOOTHER

We integrate Eqs. (4) and (5) ftom r=(n— 1} Arto r=
n At using the Runge-Kutta scheme to obtain x(t=n 4t)
and y(t=nd1) from x"~! and y"~'. We also integrate
inversely Eqs. (4) and (5) fromt=ndrtot=(n—1) At by
the use of the Runge—Kutta scheme to obtain x{(n—1) At)
and y((n—1) A¢) from x" and »".

The physical modes w"~ 1, »", "1, and & are given by

X" x((n—1)4n], w"=}[x"+x(n41)],

P 4 p((n=1)An], =100+ pndnl.
(41)

We start the leapfrog schemes (6) and (7) using u" ', u",
&1 and " in place of x" ', x", y" !, and y”, respectively.
Then we can eliminate the computational modes.

We apply the Runge-Kutta smoother noted above to the
case of Fig. ! at every 40 time steps. Figures 5 and 6 give the

4 T T T
- £=0025 A=02 x0=0 y0=0.5 1
2k
u" - i ‘ i
5 [
B EOYLEN I T J
aL ! } i i
0 100 200 t 300 400

FIG. 5. The physical mode u” of x” in Fig. 1. The Runge-Kutta
smoother is applied at ¢ =40 x integers.
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FIG. 6. The computational mode " corresponding to Fig. 5.

physical mode »” and the computational mode v" of x".
Thus, the Runge-Kutta smoother enables the correct
longtime integration. We also have applied the second-
order smoother in place of the Runge-Kutta smoother and
found it is not as effective as the Runge-Kutta smoother. To
compare the second-order smoother with the Runge-Kutta
smoother, see Rel. [6].

Figure 7 gives the computational mede |¢"| of x"
obtained from Egs. (6) and (7). The Runge-Kutta
smoother is applied at t=100. For =~ 100~ 380, the
amplitude of the physical mode «”, which is not shown in
the figure, is nearly equal to two. If we put /=2 and
£=0.025 in Eq. (37) we obtain y=0.1. We gave the line
|0 oc €®'" in Fig. 7. Thus, the theory of the parametric
excitation in Section 4 successfully explains the growth of
the computational mode.

The discussion in this paper is based on the assumption
that the leapfrog solutions are expressed by a sum of physi-
cal and computational modes as in the linear case. We find
that this assumption can be verified naturally by investigat-
ing the process leading to the augmented system associated
with the leapfrog scheme as shown in the Appendix. In the
augmented system, the information of the change of com-
putational modes expressed by (—1)" has been lost due to
the limit operation of 4¢— 0. Our quite practical scheme
to suppress the leapfrog instability or the Runge-Kutta
smoother is simply based on the fact that the computational
modes exhibit the change expressed by (- 1), which might
not be reduced from any investigation of the augmented
system alone.

1 f £0.025 A=0.0002 x°=0 y0=0.5
L fynlocgl- b

el [ A

R-K smoothing

10

300 400

FIG. 7. The growth of the computational mode |v"|.
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APPENDIX

J. M. Sanz-Serna et al [2,3] studied the temporal
behavior of the numerical solution of leapfrog schemes in
terms of the so-called augmented system. The augmented
system was shown to describe the qualitative behavior of the
leapfrog solution, in particular, the nonlinear instability
phenomenon.

In this Appendix, we show that the leapfrog solutions can
be expressed by a sum of the physical and computational
modes and the latter modes change their signs at each time
step as in the linear case.

We consider a system of differential equations

dx

7~ Flx),

X(0)=XQ, (Al}

where the function F is smooth and x, is the initial value.

The leapfrog discretization of Eq. (Al) with the time

increment A¢ gives
xn +1__ xr: -1

=F i
247 (x7),

x’=x, x'=x,,

(A2)

where the starting value x, is assumed to be given.
If we divide the sequence of X" into even and odd groups,
then they can be expressed by

and x2m+l=q

2m 2m

2m+1
X"=p 3

(A3)

respectively. Now Eq. {A2) can equivalently be expressed by

p2m~—p2"’*2 ’

T=F(qzm71)= P’ =%, (Ada)
Zm+ 1l __ o 2m—1

L L —-Fp™,  q'=x.  (Adb)

In the limit of Ar— 0 with »n 4¢ fixed, Eqs. (A4) lead to
the augmented system for Eq. (A2) [2, 3]:

P_Fa). pO)=x, (ASa)
dq_ _
P (p), q(0)=x,. (A5b)

If x,=x, in Eq. (AS5), then we would have a solution
p(7)=q(z)=x(r). In this case, the augmented system (AS5)
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coincides with the original system (Al). In the usual case,
however, x, #X%, for the finite At in (A2), so that the
augmented system gives a solution p{t)#q(z), either of
which is also differeat from x{r).

Now let us note that Eq. (A3) can be expressed formally
as
+(— 130" —q"} (A6)
According to J. M. Sanz-Serna [2], (p* q""") follow
approximately the local solution (p(z), q(¢)) of the
augmented system (A35), Therefore, we can approximate p”
and q" in Eq. (A6) by
and q" ~

p" =~ p(n Af) q((n—1) 41),

respectively. By setting

(»"-q"),

'll
Kol

uw'=3(p"+q") and

we can rewrite Eq. (A6) as

x"=u"+(—1)"¥" (A7)
The first and second terms in the right-hand side of Eq. (A7)
are, respectively, the physical and computational modes,
which are in the same form as those in the linear case. The
evolution equations for both modes are derived from
Eq. (AS) and they are

du

7 =—[F(u—v)+F(u+v)] {A8a)
and

dv 1

5 [Flu—v)—F(u+v)], {A8b)

a2

respectively.
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